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Abstract
A large number of regular and some singular bound state properties of the
ground 11S(L = 0)-states of the positronium Ps− and hydrogen ∞H− negative
ions are determined to a very high numerical accuracy. The highly accurate
variational wavefunctions are constructed with the use of exponential basis
functions written in the three-body perimetric coordinates. In particular, the
total energy of the ground state of the Ps− ion determined in our calculations
is E = −0.262 005 070 232 980 107 770 3745 au, while the analogous ground
state energy for the ∞H− ion is E = −0.527 751 016 544 377 196 589 733 au.
These values are the best-to-date variational energies obtained for these
systems.

PACS number: 36.10.Dr

In this paper, we report a large number of bound state properties of the ground 11S(L = 0)-
states in the Ps− and ∞H− ions. Each of these properties has been determined to a very
high accuracy from direct variational calculations. It should be mentioned that many bound
state properties of these two ions have been reported in our earlier works (see, e.g., [1])
and in numerous papers of other authors (see, e.g., [2]). However, some of the bound state
properties obtained in these works were not determined even to a relatively high accuracy.
In addition to this, for a number of properties, e.g., for the triple delta-function 〈δ321〉, the
actual/observed convergence was very slow. In this study, we have significantly improved
the overall quality of the variational wavefunctions. In particular, the total energies of the
ground 11S-states of the Ps− and ∞H− ions obtained in this study are the best-to-date values.
By using these wavefunctions we also determine a large number of bound state properties in
the Ps− and ∞H− ions. Note that some bound state properties considered below are singular,
i.e. the corresponding matrix elements and expectation values must be regularized before
computations.

The negative positronium ion Ps− and the negative hydrogen ion ∞H− are the Coulomb
three-body system with unit charges. Such systems/ions have only one bound state (=ground
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11S-state). The non-relativistic Hamiltonian H of an arbitrary Coulomb three-body system/ion
with unit charges takes the form (in atomic units h̄ = 1, |e| = 1,me = 1)

H = −1

2
∇2

1 − 1

2
∇2

2 − 1

2M
∇2

3 − 1

r32
− 1

r31
+

1

r21
, (1)

where rij = |ri − rj | = rji are the three interparticle distances (=relative coordinates), (ij) =
(21), (31), (32) and ri are the three Cartesian coordinates of the three particles. Also, in this
equation and everywhere below in this study the subscripts 1 and 2 stand for the two electrons
e−, while the subscript 3 means the positron e+ in the Ps− ion (M = 1) and infinitely heavy
nucleus (M = ∞) in the ∞H− ion. Our first goal is to determine the total energies and
wavefunctions of the ground 11S(L = 0)-bound states in the Ps− and ∞H− negative ions. In
other words, we need to obtain the highly accurate solutions of the corresponding Schrödinger
equation H� = E�, where E < 0 and bound state wavefunction � has the unit norm. In this
study, we shall assume that the non-relativistic Schrödinger equation is exact. All required
relativistic and QED corrections to that equation and its solutions can be computed later by
using the formulae of perturbation theory and applying the highly accurate wavefunction �

determined during the solutions of the non-relativistic Schrödinger equation.
To approximate three-body wavefunctions � and compute various bound state properties

in this work we apply the exponential variational expansion in perimetric and/or relative
coordinates. For the ground 11S-state in the Ps− and ∞H− ions this expansion of the trial
wavefunction takes the form [4]

� = 1

2
(1 + P̂ 21)

N∑
i=1

Ci exp(−α̃ir32 − β̃ir31 − γ̃ ir21)

= 1

2
(1 + P̂ 21)

N∑
i=1

Ci exp(−αiu1 − βiu2 − γiu3), (2)

where Ci are linear (or variational) parameters and αi(α̃i), βi(β̃i) and γi(γ̃ i) are nonlinear
parameters. The operator P̂ 21 is the permutation of the two identical (1 and 2) particles
(electrons) in the Ps− and ∞H− ions. Note that �, equation (2), is, in fact, only the spatial
part of the total wavefunction. The corresponding spin part of the total wavefunction is anti-
symmetric and it is written in the form χs = 1√

2
[α(1)β(2) − β(1)α(2)], where α and β are

the spin-up and spin-down functions.
The three relative coordinates in equation (2) r32, r31 and r21 are simply and uniformly

related to the perimetric coordinates u1, u2 and u3, where ui = 1
2 (rij + rik − rjk) and

i �= j �= k = (1, 2, 3). The inverse relations take the form rij = ui + uj and Jacobian
of the (r32, r31, r21) → (u1, u2, u3) transformation equals 2. Note that the three perimetric
coordinates are independent, always positive and each of them varies between 0 and +∞.
These properties of the perimetric coordinates simplify drastically the optimization of the
nonlinear parameters αi, βi and γi in equation (2). In fact, for optimization of the nonlinear
parameters in the trial wavefunctions, equation (2), we apply our approach developed a few
years ago and modified recently in [4]. All computations in this work have been performed
with the use of software written and tested by David H Bailey [5, 6].

The highly accurate wavefunction � obtained during the optimization process can be
used to determine a large number of bound state properties 〈X̂〉. In general, if X̂ is an arbitrary
regular operator defined in the non-relativistic three-body systems, then its expectation value
〈X̂〉 can be considered as the corresponding quantum property. In fact, in our earlier works we
have extensively discussed the computation of many regular properties for the Ps− and ∞H−

ions. The total variational energies of the ground 11S-states in the Ps− and ∞H− ions can be
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Table 1. The total energies (E) in atomic units for the ground states of the Ps− and ∞H− ions. N
designates the number of basis functions used.

N(A) E(Ps−) N(A) E(∞H−)

3000 −0.262 005 070 232 980 107 769 9731 2800 −0.527 751 016 544 377 196 588 192
3300 −0.262 005 070 232 980 107 770 2890 3000 −0.527 751 016 544 377 196 588 632
3500 −0.262 005 070 232 980 107 770 3449 3300 −0.527 751 016 544 377 196 589 134
3700 −0.262 005 070 232 980 107 770 3662 3500 −0.527 751 016 544 377 196 589 410
3800 −0.262 005 070 232 980 107 770 3723 3700 −0.527 751 016 544 377 196 589 586
3800a −0.262 005 070 232 980 107 770 3745 3700a −0.527 751 016 544 377 196 589 733

a After additional optimization of the ‘fast’ nonlinear parameters at this dimension (our current
procedure is described in detail in second part of [4]).

found in table 1 (all values are in atomic units). The numerical values of many bound state
properties are presented in table 2 (for the Ps− ion), table 3 and table 4 (for the ∞H− ion). The
physical meaning for almost all of these expectation values in these tables is quite clear from
the notations used, and here we can make only a few following remarks. In tables 2–4, the
notations δ31, δ21 and δ321 stand for the two- and three-particle delta-functions, respectively.
Here and below δij = δ(rij ) and δ321 = δ(r32) · δ(r31). The convergence of all delta-functions
in the Ps− ion is shown in table 3. The results from table 3 are of great interest for evaluating
the corresponding annihilation rates, since the δ31 = δ(r31) value determines, e.g., the two-
photon annihilation rate, while 〈δ(r321)〉 = 〈δ(r32) · δ(r31)〉 value is needed to compute the
one-photon annihilation rate �1γ (for more detail see, e.g., [1]).

The two-particle cusp ratios (or two-particle cusp, for short) are determined in a traditional
manner [7]:

νij =
〈
δ(rij )

∂
∂rij

〉
〈δ(rij )〉 , (3)

where δ(rij ) is the appropriate two-particle δ-function and (ij) = (21) and (31). The exact
(=predicted) value of the two-particle cusp νij in any Coulomb system equals [8, 9]

νij = qiqj

mimj

mi + mj

, (4)

where qi and qj are the electric charges and mi and mj are the masses of these particles. As
follows from the last formula the electron–electron cusp in an arbitrary system (and any state
in this system) always equals 0.5 au (exactly).

The expectation values of the two interparticle cosine functions are determined as follows:

τij = 〈cos(rik
∧rjk)〉 =

〈
rik · rjk

rik · rjk

〉
= τji (5)

where (i, j, k) = (1, 2, 3) and all cyclic permutations, while the notation rik
∧rjk means the

angle between the rik and rjk vectors. For an arbitrary three-body system the sum of the three
cosine expectation values τ21, τ31, τ32 can be written in the form

τ21 + τ31 + τ32 = 1 + 4 · 〈f 〉 (6)

where the quantity 〈f 〉 from the last equation is expressed in terms of the relative coordinates
r32, r31, r21 and perimetric coordinates u1, u2, u3 as follows:

〈f 〉 = 1

2
〈�| u1

r32

u2

r31

u3

r21
|�〉 = 1

2

∫ ∞

0

∫ ∞

0

∫ r32+r31

|r32−r31|
|�(r32, r31, r21)|2u1u2u3 dr32 dr31 dr21

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
|�(u1, u2, u3)|2u1u2u3 du1 du2 du3. (7)



6178 A M Frolov

Table 2. The expectation values 〈Xij 〉 in atomic units of some properties for the ground state of
the Ps− ion. The notations 1 and 2 designate the electrons, while 3 stands for the positron (e+).

〈Xij 〉 Ps− 〈Xij 〉 Ps−
〈
r−2

21

〉
0.036 022 058 454 537 165

〈
r−1

21

〉
0.155 631 905 652 480 397 419〈

r−2
31

〉
0.279 326 542 224 949 154

〈
r−1

31

〉
0.339 821 023 059 220 306 479

〈r21〉 8.548 580 655 099 186 1115
〈
r2

21

〉
93.178 633 847 981 329 006

〈r31〉 5.489 633 252 359 449 9333
〈
r2

31

〉
48.418 937 226 237 955 413〈

r3
21

〉
1265.580 447 878 144 1205

〈
r4

21

〉
21054.453 389 258 358 095〈

r3
31

〉
607.295 629 623 278 442 20

〈
r4

31

〉
9930.638 679 796 004 1546

〈(r31 · r32)
−1〉 0.090 935 346 529 989 3985 〈r31 · r32〉 1.829 620 302 247 290 92

〈(r31 · r21)
−1〉 0.060 697 690 288 581 9557 〈r31 · r21〉 46.589 316 923 990 664 503

〈(r32 · r31 · r21)
−1〉 0.022 034 238 016 335 30 1

2

(〈
r2
32

r3
31

〉
−

〈
r2
21

r3
31

〉)
−0.123 432 091 105 261 593〈

r31 · r32
r3
31

〉
0.046 478 420 424 385 602

〈
r31 · r21

r3
31

〉
0.293 342 602 634 871 746〈

− 1
2 ∇2

1

〉
0.066 619 294 535 890 008 5246 〈p1 · p2〉 0.004 472 107 910 579 926 329 722〈

− 1
2 ∇2

3

〉
0.128 766 481 161 200 090 720 〈p1 · p3〉 0.128 766 481 161 200 090 7195

τ31 0.591 981 701 148 902 233 258 〈δ31〉 2.073 319 800 5178 × 10−2

τ21 0.019 769 632 817 132 001 755 〈δ21〉 1.709 967 563 57 × 10−4

〈f 〉 0.050 933 258 778 734 117 0676 〈δ321〉 3.588 914 61 × 10−5

ν31 −0.500 000 000 001 21 ν21 0.499 999 999 891 34
νa

31 −0.5 νa
21 0.5〈

r−3
21

〉
R

0.011 310 500 730 58
〈
r−3

31

〉
R

−0.253 484 174 704 05〈
r−3

21

〉
0.013 459 309 344 903

〈
r−3

31

〉
0.007 056 875 449 733〈

r−4
21

〉
R

0.000 304 810 115 8
〈
r−5

21

〉
R

−0.001 442 518 415 8〈
r−4

31

〉
R

0.135 769 697 986
〈
r−5

31

〉
R

−0.050 344 707 775

〈f21〉 −0.003 223 212 861 〈F21〉 0.000 480 586 806
〈f31〉 0.134 914 310 854 〈F31〉 0.246 790 335 899〈
r−4

21

〉
−0.002 918 402 745

〈
r−5

21

〉
−0.000 961 931 610〈

r−4
31

〉
0.270 684 008 84

〈
r−5

31

〉
0.196 445 628 12

a The exact value from equation (4).

Table 3. Convergence of the delta-function expectation values in in atomic units for the ground
states of the Ps− ion. N designates the number of basis functions used.

N 〈δ31〉 ≡ 〈δ+−〉 〈δ21〉 ≡ 〈δ−−〉 〈δ321〉 ≡ 〈δ+−−〉
3000 2.073 319 800 519 7 × 10−2 1.709 967 563 53 × 10−4 3.588 915 97 × 10−5

3300 2.073 319 800 518 5 × 10−2 1.709 967 563 45 × 10−4 3.588 916 25 × 10−5

3500 2.073 319 800 519 0 × 10−2 1.709 967 563 54 × 10−4 3.588 916 47 × 10−5

3700 2.073 319 800 517 9 × 10−2 1.709 967 563 45 × 10−4 3.588 917 25 × 10−5

3800 2.073 319 800 518 7 × 10−2 1.709 967 563 40 × 10−4 3.588 917 36 × 10−5

3800a 2.073 319 800 518 1 × 10−2 1.709 967 563 39 × 10−4 3.588 917 35 × 10−5

V b 2.073 319 800 518 0(15) × 10−2 1.709 967 563 40(10) × 10−4 3.588 917 5(4) × 10−5

a After additional optimization of the ‘fast’ nonlinear parameters at this dimension (for more details, see the second
part of [4]).
b Numerical values currently used for numerical evaluation of various annihilation rates (see, e.g., [19]).
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Table 4. The expectation values 〈Xij 〉 in atomic units of some properties for the ground state of
the ∞H− ion. The notations 1 and 2 designate the electrons, while 3 stands for the infinitely heavy
proton.

〈Xij 〉 ∞H− 〈Xij 〉 ∞H−
〈
r−2

21

〉
0.155 104 152 562 425 371

〈
r−1

21

〉
0.311 021 502 214 300 051 53〈

r−2
31

〉
1.116 662 824 525 419 316

〈
r−1

31

〉
0.683 261 767 651 527 222 35

〈r21〉 4.412 694 497 991 727 721 17
〈
r2

21

〉
25.202 025 291 240 331 899 2

〈r31〉 2.710 178 278 444 420 365 35
〈
r2

31

〉
11.913 699 678 051 262 275 1〈

r3
21

〉
180.605 600 230 174 774 8

〈
r4

21

〉
1590.094 603 939 485 288〈

r3
31

〉
76.023 097 049 027 179 10

〈
r4

31

〉
645.144 542 412 219 368 1

〈(r31 · r32)
−1〉 0.382 627 890 340 205 41 〈r31 · r32〉 −0.687 312 967 568 903 674 475

〈(r31 · r21)
−1〉 0.253 077 567 064 566 870 〈r31 · r21〉 12.601 012 645 620 165 950

〈(r32 · r31 · r21)
−1〉 0.200 823 439 629 182 4 1

2

(〈
r2
32

r3
31

〉
−

〈
r2
21

r3
31

〉)
−0.464 261 853 080 556 472〈

r31 · r32
r3
31

〉
−0.122 630 969 254 792 88

〈
r31 · r21

r3
31

〉
0.805 892 736 906 320 083〈

− 1
2 ∇2

1

〉
0.263 875 508 272 188 598 249 〈p1 · p2〉 0.032 879 781 852 304 721 667〈

− 1
2 ∇2

3

〉
0.560 630 798 396 681 918 249 〈p1 · p3〉 −0.560 630 798 396 681 918 226

τ31 0.649 871 581 192 088 166 936 〈δ31〉 0.164 552 872 847 13
τ21 −0.105 147 693 565 977 901 039 〈δ21〉 2.737 992 126 229 4 × 10−3

〈f 〉 0.048 648 867 204 549 608 30 〈δ321〉 5.039 712 8 × 10−3

ν31 −1.000 000 000 014 54 ν21 0.499 999 998 1281
νa

31 −1.0 νa
21 0.5〈

r−3
21

〉
R

0.064 307 887 272 1
〈
r−3

31

〉
R

−3.435 594 850 5463〈
r−3

21

〉
0.098 714 511 0695

〈
r−3

31

〉
−1.367 762 464 6890〈

r−4
21

〉
R

−0.051 066 886 311
〈
r−5

21

〉
R

−0.029289745749〈
r−4

31

〉
R

5.042 273 284 752
〈
r−5

31

〉
R

−4.665 299 747 870

〈f21〉 −0.051 609 927 896 〈F21〉 −0.019 857 873 894
〈f31〉 3.323 815 587 264 〈F31〉 7.911 272 546 863〈
r−4

21

〉
−0.102 676 814 206

〈
r−5

21

〉
−0.049 147 619 644〈

r−4
31

〉
8.366 088 872 02

〈
r−5

31

〉
3.245 972 798 99

a The exact value from equation (4).

For symmetric (e.g., for two-electron) systems one also finds that in equation (6) τ32 = τ31.
The expectation value 〈f 〉 can be calculated directly or by applying τij . The coincidence of
these two values of 〈f 〉 is an additional test to prove the correctness of our results.

Tables 2 and 4 also include the principal values (=non-singular parts) of some singular
expectation values. The singular expectation values reported in this study include the〈

1
r3
ij

〉
,
〈

1
r4
ij

〉
,
〈

1
r5
ij

〉
,
〈 r31 · r32

r3
31

〉
and

〈 r31 · r22

r3
31

〉
expectation values. Here and everywhere below (ij) =

(21) and (31). The computation of the principal parts of these singular integrals is described
in detail in our previous works (see, e.g., [11]). Here we just present the final formulae used
in computations. The principal parts of the

〈
r−3
ij

〉
,
〈
r−4
ij

〉
and

〈
r−5
ij

〉
expectation values have been

computed with the use of the following formulae:〈
1

r3
ij

〉
= 4π〈δ(rij )〉 +

〈
1

r3
ij

〉
R

(8)



6180 A M Frolov

Table 5. The best values of the total energies (E) in atomic units for the ground states of the Ps−
and H− ions obtained in earlier variational computations.

E(Ps−) E(∞H−)

Ea −0.262 005 070 232 980 107 770 374 5 Eb −0.527 751 016 544 377 196 589 733
Ec −0.262 005 070 232 980 107 766 6 Ec −0.527 751 016 544 377 196 586 5
Ed −0.262 005 070 232 980 107 696 Ed −0.527 751 016 544 377 196 503
Ee −0.262 005 070 232 965 Ee −0.527 751 016 544 253
Ef −0.262 005 070 232 94 − −
a,b This work.
c Reference [2].
d Reference [19].
e Reference [1].
f Reference [18].

〈
1

r4
ij

〉
= 〈fij 〉 +

〈
1

r4
ij

〉
R

= −6π

〈
δ(rij )

∂

∂rij

〉
+

〈
1

r4
ij

〉
R

(9)

〈
1

r5
ij

〉
= 〈Fij 〉 +

〈
1

r5
ij

〉
R

= 2π

[〈
δ(rij )

∂2

∂r2
ij

〉
− 1

3

〈
δ(rij )

∂2

∂rkj ∂rki

〉]
+

〈
1

r5
ij

〉
R

, (10)

where
〈

1
rn
ij

〉
R

= 〈
r−n
ij

〉
R

designates the regular part of the
〈
r−n
ij

〉
expectation value. The explicit

formulae for the regular parts of the
〈

1
r3
ij

〉
,
〈

1
r4
ij

〉
and

〈
1
r5
ij

〉
expectation values are presented in

[11]. The difference between the principal and regular parts of any expectation value is called
the finite term contribution (or finite contributions) [11]. For the regular expectation values
all finite contributions equal zero identically. In equations (8)–(10), the 〈δ(rij )Â(rij , rki , rkj )〉
expectation value means the 〈δ(rij )Â(rij , rki , rkj )(�

∗�)〉 expectation value. All expectation
values mentioned in these formulae, including the finite-term contributions 〈fij 〉 and 〈Fij 〉,
can be found in tables 2 and 4.

Note that for the ∞H− ion, the electron–electron expectation value
〈
r−3

21

〉
corresponds

to the so-called Araki–Sucher term which contributes to the lowest order QED correction
[12, 13]. Another contribution to that correction comes from the Bethe logarithm [14]. The
expectation values

〈
r−5
ij

〉
are needed to compute the matrix elements of the potential V ∼ r−5.

Such expectation values are needed, e.g., to compute the Wichmann–Kroll corrections on the
vacuum polarization [15].

The explicit formula for the
〈 r31 · r32

r3
31

〉
expectation value takes the form〈

r31 · r32

r3
31

〉
= 1

2

〈
1

r31

〉
+

1

2

[〈
r2

32

r3
31

〉
−

〈
r2

21

r3
31

〉]
. (11)

The first expectation value on the right-hand side of this expression is regular (it can be found,
e.g., in the expectation value of the Coulomb 1

r31
potential). The second and third expectation

values on the right-hand side of this equation are individually singular. But each of them
contains exactly the same singularity, which can be written in the form �A · (ln ε + γE)

(at ε → 0), where ε is a small (positive) parameter, while γE is the Euler constant (γE =
0.577 215. . .) and A is a numerical constant (for more detail, see, e.g., [11] and references
therein). Since the two terms with singularities have the opposite signs, these two singularities
cancel each other completely from the final expression. The complete cancellation of
singularities means that the right-hand side of equation (11) is regular and its computation does
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not present any problem. The method of regularization based on the complete compensation
of singular parts arising from different terms in one formula was proposed almost 200 years
ago by Italian mathematician Frullani [16]. In general, the singular expectation value which
can be regularized with the use of this method is called Frullanian. Note that the

〈 r31 · r21

r3
31

〉
expectation value is also Frullanian, while the

〈 r32 · r21

r3
31

〉
expectation value is not (it is singular).

In the last case, the two singularities from different terms are added to each other (instead of
cancellation). Such a case can be designated as anti-Frullanian. The regular expectation value〈 r31 · r21

r3
31

〉
can be computed either directly, or with the use of the following formula:〈

r31 · r21

r3
31

〉
=

〈
1

r31

〉
−

〈
r31 · r32

r3
31

〉
. (12)

Tables 2 and 4 contain the 1
2

(〈 r2
32

r3
31

〉 − 〈 r2
21

r3
31

〉)
,
〈 r31 · r21

r3
31

〉
and

〈 r31 · r32

r3
31

〉
expectation values.

Thus in this work we have determined the bound state properties of the ground
11S(L = 0)-state in the Ps− and ∞H− ions to a benchmark accuracy. Our variational results
obtained for the ground state energies are the best-to-date. The energies determined in a
number of earlier computations can be found in table 5. Our results also include some singular
properties, i.e. the properties which are represented by the singular expectation values. In
particular, we have computed the

〈
r−3
ij

〉
,
〈
r−4
ij

〉
,
〈
r−5
ij

〉
,
〈 r31 · r21

r3
31

〉
and

〈 r31 · r32

r3
31

〉
singular expectation

values. Analogous computations of the singular expectation values for the 11S- and 23S-states
of the helium atoms (3He, 4He and ∞He atoms) have been performed in [17].
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