Highly accurate evaluation of the singular properties for the positronium and hydrogen negative ions

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 406175
(http://iopscience.iop.org/1751-8121/40/23/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.109
The article was downloaded on 03/06/2010 at 05:13

Please note that terms and conditions apply.

Highly accurate evaluation of the singular properties for the positronium and hydrogen negative ions

Alexei M Frolov
Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 5B7, Canada

Received 15 April 2007, in final form 30 April 2007
Published 22 May 2007
Online at stacks.iop.org/JPhysA/40/6175

Abstract

A large number of regular and some singular bound state properties of the ground $1^{1} S(L=0)$-states of the positronium Ps^{-}and hydrogen ${ }^{\infty} \mathrm{H}^{-}$negative ions are determined to a very high numerical accuracy. The highly accurate variational wavefunctions are constructed with the use of exponential basis functions written in the three-body perimetric coordinates. In particular, the total energy of the ground state of the Ps^{-}ion determined in our calculations is $E=-0.2620050702329801077703745$ au, while the analogous ground state energy for the ${ }^{\infty} \mathrm{H}^{-}$ion is $E=-0.527751016544377196589733$ au. These values are the best-to-date variational energies obtained for these systems.

PACS number: 36.10.Dr

In this paper, we report a large number of bound state properties of the ground $1^{1} S(L=0)$ states in the Ps^{-}and ${ }^{\infty} \mathrm{H}^{-}$ions. Each of these properties has been determined to a very high accuracy from direct variational calculations. It should be mentioned that many bound state properties of these two ions have been reported in our earlier works (see, e.g., [1]) and in numerous papers of other authors (see, e.g., [2]). However, some of the bound state properties obtained in these works were not determined even to a relatively high accuracy. In addition to this, for a number of properties, e.g., for the triple delta-function $\left\langle\delta_{321}\right\rangle$, the actual/observed convergence was very slow. In this study, we have significantly improved the overall quality of the variational wavefunctions. In particular, the total energies of the ground $1^{1} S$-states of the Ps^{-}and ${ }^{\infty} \mathrm{H}^{-}$ions obtained in this study are the best-to-date values. By using these wavefunctions we also determine a large number of bound state properties in the Ps^{-}and ${ }^{\infty} \mathrm{H}^{-}$ions. Note that some bound state properties considered below are singular, i.e. the corresponding matrix elements and expectation values must be regularized before computations.

The negative positronium ion Ps^{-}and the negative hydrogen ion ${ }^{\infty} \mathrm{H}^{-}$are the Coulomb three-body system with unit charges. Such systems/ions have only one bound state (=ground
$1^{1} S$-state). The non-relativistic Hamiltonian H of an arbitrary Coulomb three-body system/ion with unit charges takes the form (in atomic units $\hbar=1,|e|=1, m_{e}=1$)

$$
\begin{equation*}
H=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{1}{2 M} \nabla_{3}^{2}-\frac{1}{r_{32}}-\frac{1}{r_{31}}+\frac{1}{r_{21}}, \tag{1}
\end{equation*}
$$

where $r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|=r_{j i}$ are the three interparticle distances (=relative coordinates), $(i j)=$ (21), (31), (32) and \mathbf{r}_{i} are the three Cartesian coordinates of the three particles. Also, in this equation and everywhere below in this study the subscripts 1 and 2 stand for the two electrons e^{-}, while the subscript 3 means the positron e^{+}in the Ps^{-}ion $(M=1)$ and infinitely heavy nucleus $(M=\infty)$ in the ${ }^{\infty} \mathrm{H}^{-}$ion. Our first goal is to determine the total energies and wavefunctions of the ground $1^{1} S(L=0)$-bound states in the Ps^{-}and ${ }^{\infty} \mathrm{H}^{-}$negative ions. In other words, we need to obtain the highly accurate solutions of the corresponding Schrödinger equation $H \Psi=E \Psi$, where $E<0$ and bound state wavefunction Ψ has the unit norm. In this study, we shall assume that the non-relativistic Schrödinger equation is exact. All required relativistic and QED corrections to that equation and its solutions can be computed later by using the formulae of perturbation theory and applying the highly accurate wavefunction Ψ determined during the solutions of the non-relativistic Schrödinger equation.

To approximate three-body wavefunctions Ψ and compute various bound state properties in this work we apply the exponential variational expansion in perimetric and/or relative coordinates. For the ground $1^{1} S$-state in the Ps^{-}and ${ }^{\infty} \mathrm{H}^{-}$ions this expansion of the trial wavefunction takes the form [4]

$$
\begin{align*}
\Psi=\frac{1}{2}(1+ & \left.\hat{P}_{21}\right) \sum_{i=1}^{N} C_{i} \exp \left(-\tilde{\alpha}_{i} r_{32}-\tilde{\beta}_{i} r_{31}-\tilde{\gamma}_{i} r_{21}\right) \\
& =\frac{1}{2}\left(1+\hat{P}_{21}\right) \sum_{i=1}^{N} C_{i} \exp \left(-\alpha_{i} u_{1}-\beta_{i} u_{2}-\gamma_{i} u_{3}\right) \tag{2}
\end{align*}
$$

where C_{i} are linear (or variational) parameters and $\alpha_{i}\left(\tilde{\alpha}_{i}\right), \beta_{i}\left(\tilde{\beta}_{i}\right)$ and $\gamma_{i}\left(\tilde{\gamma}_{i}\right)$ are nonlinear parameters. The operator \hat{P}_{21} is the permutation of the two identical (1 and 2) particles (electrons) in the Ps^{-}and ${ }^{\infty} \mathrm{H}^{-}$ions. Note that Ψ, equation (2), is, in fact, only the spatial part of the total wavefunction. The corresponding spin part of the total wavefunction is antisymmetric and it is written in the form $\chi_{s}=\frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]$, where α and β are the spin-up and spin-down functions.

The three relative coordinates in equation (2) r_{32}, r_{31} and r_{21} are simply and uniformly related to the perimetric coordinates u_{1}, u_{2} and u_{3}, where $u_{i}=\frac{1}{2}\left(r_{i j}+r_{i k}-r_{j k}\right)$ and $i \neq j \neq k=(1,2,3)$. The inverse relations take the form $r_{i j}=u_{i}+u_{j}$ and Jacobian of the $\left(r_{32}, r_{31}, r_{21}\right) \rightarrow\left(u_{1}, u_{2}, u_{3}\right)$ transformation equals 2 . Note that the three perimetric coordinates are independent, always positive and each of them varies between 0 and $+\infty$. These properties of the perimetric coordinates simplify drastically the optimization of the nonlinear parameters α_{i}, β_{i} and γ_{i} in equation (2). In fact, for optimization of the nonlinear parameters in the trial wavefunctions, equation (2), we apply our approach developed a few years ago and modified recently in [4]. All computations in this work have been performed with the use of software written and tested by David H Bailey [5, 6].

The highly accurate wavefunction Ψ obtained during the optimization process can be used to determine a large number of bound state properties $\langle\hat{X}\rangle$. In general, if \hat{X} is an arbitrary regular operator defined in the non-relativistic three-body systems, then its expectation value $\langle\hat{X}\rangle$ can be considered as the corresponding quantum property. In fact, in our earlier works we have extensively discussed the computation of many regular properties for the Ps^{-}and ${ }^{\infty} \mathrm{H}^{-}$ ions. The total variational energies of the ground $1^{1} S$-states in the Ps^{-}and ${ }^{\infty} \mathrm{H}^{-}$ions can be

Table 1. The total energies (E) in atomic units for the ground states of the Ps^{-}and ${ }^{\infty} \mathrm{H}^{-}$ions. N designates the number of basis functions used.

$N(A)$	$E\left(\mathrm{Ps}^{-}\right)$	$N(A)$	$E\left({ }^{\infty} \mathrm{H}^{-}\right)$
3000	-0.2620050702329801077699731	2800	-0.527751016544377196588192
3300	-0.2620050702329801077702890	3000	-0.527751016544377196588632
3500	-0.2620050702329801077703449	3300	-0.527751016544377196589134
3700	-0.2620050702329801077703662	3500	-0.527751016544377196589410
3800	-0.2620050702329801077703723	3700	-0.527751016544377196589586
3800^{a}	-0.2620050702329801077703745	3700^{a}	-0.527751016544377196589733

${ }^{\text {a }}$ After additional optimization of the 'fast' nonlinear parameters at this dimension (our current procedure is described in detail in second part of [4]).
found in table 1 (all values are in atomic units). The numerical values of many bound state properties are presented in table 2 (for the Ps^{-}ion), table 3 and table 4 (for the ${ }^{\infty} \mathrm{H}^{-}$ion). The physical meaning for almost all of these expectation values in these tables is quite clear from the notations used, and here we can make only a few following remarks. In tables $2-4$, the notations δ_{31}, δ_{21} and δ_{321} stand for the two- and three-particle delta-functions, respectively. Here and below $\delta_{i j}=\delta\left(\mathbf{r}_{i j}\right)$ and $\delta_{321}=\delta\left(\mathbf{r}_{32}\right) \cdot \delta\left(\mathbf{r}_{31}\right)$. The convergence of all delta-functions in the Ps^{-}ion is shown in table 3. The results from table 3 are of great interest for evaluating the corresponding annihilation rates, since the $\delta_{31}=\delta\left(\mathbf{r}_{31}\right)$ value determines, e.g., the twophoton annihilation rate, while $\left\langle\delta\left(\mathbf{r}_{321}\right)\right\rangle=\left\langle\delta\left(\mathbf{r}_{32}\right) \cdot \delta\left(\mathbf{r}_{31}\right)\right\rangle$ value is needed to compute the one-photon annihilation rate $\Gamma_{1 \gamma}$ (for more detail see, e.g., [1]).

The two-particle cusp ratios (or two-particle cusp, for short) are determined in a traditional manner [7]:

$$
\begin{equation*}
v_{i j}=\frac{\left\langle\delta\left(\mathbf{r}_{i j}\right) \frac{\partial}{\partial r_{i j}}\right\rangle}{\left\langle\delta\left(\mathbf{r}_{i j}\right)\right\rangle} \tag{3}
\end{equation*}
$$

where $\delta\left(\mathbf{r}_{i j}\right)$ is the appropriate two-particle δ-function and $(i j)=(21)$ and (31). The exact (=predicted) value of the two-particle cusp $v_{i j}$ in any Coulomb system equals [8, 9]

$$
\begin{equation*}
v_{i j}=q_{i} q_{j} \frac{m_{i} m_{j}}{m_{i}+m_{j}} \tag{4}
\end{equation*}
$$

where q_{i} and q_{j} are the electric charges and m_{i} and m_{j} are the masses of these particles. As follows from the last formula the electron-electron cusp in an arbitrary system (and any state in this system) always equals 0.5 au (exactly).

The expectation values of the two interparticle cosine functions are determined as follows:

$$
\begin{equation*}
\tau_{i j}=\left\langle\cos \left(\mathbf{r}_{i k} \wedge \mathbf{r}_{j k}\right)\right\rangle=\left\langle\frac{\mathbf{r}_{i k} \cdot \mathbf{r}_{j k}}{r_{i k} \cdot r_{j k}}\right\rangle=\tau_{j i} \tag{5}
\end{equation*}
$$

where $(i, j, k)=(1,2,3)$ and all cyclic permutations, while the notation $\mathbf{r}_{i k} \wedge \mathbf{r}_{j k}$ means the angle between the $\mathbf{r}_{i k}$ and $\mathbf{r}_{j k}$ vectors. For an arbitrary three-body system the sum of the three cosine expectation values $\tau_{21}, \tau_{31}, \tau_{32}$ can be written in the form

$$
\begin{equation*}
\tau_{21}+\tau_{31}+\tau_{32}=1+4 \cdot\langle f\rangle \tag{6}
\end{equation*}
$$

where the quantity $\langle f\rangle$ from the last equation is expressed in terms of the relative coordinates r_{32}, r_{31}, r_{21} and perimetric coordinates u_{1}, u_{2}, u_{3} as follows:

$$
\begin{align*}
\langle f\rangle & =\frac{1}{2}\langle\Psi| \frac{u_{1}}{r_{32}} \frac{u_{2}}{r_{31}} \frac{u_{3}}{r_{21}}|\Psi\rangle=\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} \int_{\left|r_{32}-r_{31}\right|}^{r_{32}+r_{31}}\left|\Psi\left(r_{32}, r_{31}, r_{21}\right)\right|^{2} u_{1} u_{2} u_{3} \mathrm{~d} r_{32} \mathrm{~d} r_{31} \mathrm{~d} r_{21} \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left|\Psi\left(u_{1}, u_{2}, u_{3}\right)\right|^{2} u_{1} u_{2} u_{3} \mathrm{~d} u_{1} \mathrm{~d} u_{2} \mathrm{~d} u_{3} \tag{7}
\end{align*}
$$

Table 2. The expectation values $\left\langle X_{i j}\right\rangle$ in atomic units of some properties for the ground state of the Ps^{-}ion. The notations 1 and 2 designate the electrons, while 3 stands for the positron $\left(e^{+}\right)$.

$\left\langle X_{i j}\right\rangle$	Ps^{-}	$\left\langle X_{i j}\right\rangle$	Ps^{-}
$\left\langle r_{21}^{-2}\right\rangle$	0.036022058454537165	$\left\langle r_{21}^{-1}\right\rangle$	0.155631905652480397419
$\left\langle r_{31}^{-2}\right\rangle$	0.279326542224949154	$\left\langle r_{31}^{-1}\right\rangle$	0.339821023059220306479
$\left\langle r_{21}\right\rangle$	8.5485806550991861115	$\left\langle r_{21}^{2}\right\rangle$	93.178633847981329006
$\left\langle r_{31}\right\rangle$	5.4896332523594499333	$\left\langle r_{31}^{2}\right\rangle$	48.418937226237955413
$\left\langle r_{21}^{3}\right\rangle$	1265.5804478781441205	$\left\langle r_{21}^{4}\right\rangle$	21054.453389258358095
$\left\langle r_{31}^{3}\right\rangle$	607.29562962327844220	$\left\langle r_{31}^{4}\right\rangle$	9930.6386797960041546
$\left\langle\left(r_{31} \cdot r_{32}\right)^{-1}\right\rangle$	0.0909353465299893985	$\left\langle\mathbf{r}_{31} \cdot \mathbf{r}_{32}\right\rangle$	1.82962030224729092
$\left\langle\left(r_{31} \cdot r_{21}\right)^{-1}\right\rangle$	0.0606976902885819557	$\left\langle\mathbf{r}_{31} \cdot \mathbf{r}_{21}\right\rangle$	46.589316923990664503
$\left\langle\left(r_{32} \cdot r_{31} \cdot r_{21}\right)^{-1}\right\rangle$	0.02203423801633530	$\frac{1}{2}\left(\left\langle r_{32}^{2} r_{31}^{3}\right\rangle-\left\langle\frac{r_{21}^{2}}{r_{31}^{3}}\right\rangle\right)$	-0.123432091105261593
$\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^{3}}\right\rangle$	0.046478420424385602	$\left\langle\frac{\left.\mathbf{r}_{31} \mathbf{r}_{21}\right\rangle}{r_{31}^{3}}\right\rangle$	0.293342602634871746
$\left\langle-\frac{1}{2} \nabla_{1}^{2}\right\rangle$	0.0666192945358900085246	$\left\langle\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right\rangle$	0.004472107910579926329722
$\left\langle-\frac{1}{2} \nabla_{3}^{2}\right\rangle$	0.128766481161200090720	$\left\langle\mathbf{p}_{1} \cdot \mathbf{p}_{3}\right\rangle$	0.1287664811612000907195
τ_{31}	0.591981701148902233258	$\left\langle\delta_{31}\right\rangle$	$2.0733198005178 \times 10^{-2}$
τ_{21}	0.019769632817132001755	$\left\langle\delta_{21}\right\rangle$	$1.70996756357 \times 10^{-4}$
$\langle f\rangle$	0.0509332587787341170676	$\left\langle\delta_{321}\right\rangle$	$3.58891461 \times 10^{-5}$
ν_{31}	-0.50000000000121	ν_{21}	0.49999999989134
ν_{31}^{a}	-0.5	ν_{21}^{a}	$\left\langle r_{31}^{-3}\right\rangle_{R}$

${ }^{a}$ The exact value from equation (4).

Table 3. Convergence of the delta-function expectation values in in atomic units for the ground states of the Ps^{-}ion. N designates the number of basis functions used.

N	$\left\langle\delta_{31}\right\rangle \equiv\left\langle\delta_{+-}\right\rangle$	$\left\langle\delta_{21}\right\rangle \equiv\left\langle\delta_{--}\right\rangle$	$\left\langle\delta_{321}\right\rangle \equiv\left\langle\delta_{+--}\right\rangle$
3000	$2.0733198005197 \times 10^{-2}$	$1.70996756353 \times 10^{-4}$	$3.58891597 \times 10^{-5}$
3300	$2.0733198005185 \times 10^{-2}$	$1.70996756345 \times 10^{-4}$	$3.58891625 \times 10^{-5}$
3500	$2.0733198005190 \times 10^{-2}$	$1.70996756354 \times 10^{-4}$	$3.58891647 \times 10^{-5}$
3700	$2.0733198005179 \times 10^{-2}$	$1.70996756345 \times 10^{-4}$	$3.58891725 \times 10^{-5}$
3800	$2.0733198005187 \times 10^{-2}$	$1.70996756340 \times 10^{-4}$	$3.58891736 \times 10^{-5}$
3800^{a}	$2.0733198005181 \times 10^{-2}$	$1.70996756339 \times 10^{-4}$	$3.58891735 \times 10^{-5}$
V^{b}	$2.0733198005180(15) \times 10^{-2}$	$1.70996756340(10) \times 10^{-4}$	$3.5889175(4) \times 10^{-5}$

[^0]Table 4. The expectation values $\left\langle X_{i j}\right\rangle$ in atomic units of some properties for the ground state of the ${ }^{\infty} \mathrm{H}^{-}$ion. The notations 1 and 2 designate the electrons, while 3 stands for the infinitely heavy proton.

$\left\langle X_{i j}\right\rangle$	${ }^{\infty} \mathrm{H}^{-}$	$\left\langle X_{i j}\right\rangle$	${ }^{\infty} \mathrm{H}^{-}$
$\left\langle r_{21}^{-2}\right\rangle$	0.155104152562425371	$\left\langle r_{21}^{-1}\right\rangle$	0.31102150221430005153
$\left\langle r_{31}^{-2}\right\rangle$	1.116662824525419316	$\left\langle r_{31}^{-1}\right\rangle$	0.68326176765152722235
$\left\langle r_{21}\right\rangle$	4.41269449799172772117	$\left\langle r_{21}^{2}\right\rangle$	25.2020252912403318992
$\left\langle r_{31}\right\rangle$	2.71017827844442036535	$\left\langle r_{31}^{2}\right\rangle$	11.9136996780512622751
$\left\langle r_{21}^{3}\right\rangle$	180.6056002301747748	$\left\langle r_{21}^{4}\right\rangle$	1590.094603939485288
$\left\langle r_{31}^{3}\right\rangle$	76.02309704902717910	$\left\langle r_{31}^{4}\right\rangle$	645.1445424122193681
$\left\langle\left(r_{31} \cdot r_{32}\right)^{-1}\right\rangle$	0.38262789034020541	$\left\langle\mathbf{r}_{31} \cdot \mathbf{r}_{32}\right\rangle$	-0.687312967568903674475
$\left\langle\left(r_{31} \cdot r_{21}\right)^{-1}\right\rangle$	0.253077567064566870	$\left\langle\mathbf{r}_{31} \cdot \mathbf{r}_{21}\right\rangle$	12.601012645620165950
$\left\langle\left(r_{32} \cdot r_{31} \cdot r_{21}\right)^{-1}\right\rangle$	0.2008234396291824	$\frac{1}{2}\left(\left\langle\frac{r_{32}^{2}}{r_{31}^{3}}\right\rangle-\left\langle\frac{r_{21}^{2}}{r_{31}^{3}}\right\rangle\right)$	-0.464261 853080556472
$\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^{3}}\right\rangle$	-0.122 63096925479288	$\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{21}}{r_{31}^{3}}\right\rangle$	0.805892736906320083
$\left\langle-\frac{1}{2} \nabla_{1}^{2}\right\rangle$	0.263875508272188598249	$\left\langle\mathbf{p}_{1} \cdot \mathbf{p}_{2}\right\rangle$	0.032879781852304721667
$\left\langle-\frac{1}{2} \nabla_{3}^{2}\right\rangle$	0.560630798396681918249	$\left\langle\mathbf{p}_{1} \cdot \mathbf{p}_{3}\right\rangle$	-0.560 630798396681918226
τ_{31}	0.649871581192088166936	$\left\langle\delta_{31}\right\rangle$	0.16455287284713
τ_{21}	-0.105 147693565977901039	$\left\langle\delta_{21}\right\rangle$	$2.7379921262294 \times 10^{-3}$
$\langle f\rangle$	0.04864886720454960830	$\left\langle\delta_{321}\right\rangle$	5.0397128×10^{-3}
ν_{31}	-1.000 00000001454	ν_{21}	0.4999999981281
ν_{31}^{a}	-1.0	ν_{21}^{a}	0.5
$\left\langle r_{21}^{-3}\right\rangle_{R}$	0.0643078872721	$\left\langle r_{31}^{-3}\right\rangle_{R}$	-3.4355948505463
$\left\langle r_{21}^{-3}\right\rangle^{\prime}$	0.0987145110695	$\left\langle r_{31}^{-3}\right\rangle$	-1.3677624646890
$\left\langle r_{21}^{-4}\right\rangle_{R}$	-0.051 066886311	$\left\langle r_{21}^{-5}\right\rangle_{R}$	-0.029289745749
$\left\langle r_{31}^{-4}\right\rangle_{R}^{K}$	5.042273284752	$\left\langle r_{31}^{-5}\right\rangle_{R}$	-4.665 299747870
$\left\langle f_{21}\right\rangle$	-0.051 609927896	$\left\langle F_{21}\right\rangle$	-0.019857873894
$\left\langle f_{31}\right\rangle$	3.323815587264	$\left\langle F_{31}\right\rangle$	7.911272546863
$\left\langle r_{21}^{-4}\right\rangle$	-0.102 676814206	$\left\langle r_{21}^{-5}\right\rangle$	-0.049 147619644
$\left\langle r_{31}^{-4}\right\rangle$	8.36608887202	$\left\langle r_{31}^{-5}\right\rangle$	3.24597279899

[^1]For symmetric (e.g., for two-electron) systems one also finds that in equation (6) $\tau_{32}=\tau_{31}$. The expectation value $\langle f\rangle$ can be calculated directly or by applying $\tau_{i j}$. The coincidence of these two values of $\langle f\rangle$ is an additional test to prove the correctness of our results.

Tables 2 and 4 also include the principal values (=non-singular parts) of some singular expectation values. The singular expectation values reported in this study include the $\left\langle\frac{1}{r_{i j}^{3}}\right\rangle,\left\langle\frac{1}{r_{i j}^{4}}\right\rangle,\left\langle\frac{1}{r_{i j}^{5}}\right\rangle,\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^{3}}\right\rangle$ and $\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{22}}{r_{31}^{3}}\right\rangle$ expectation values. Here and everywhere below $(i j)=$ (21) and (31). The computation of the principal parts of these singular integrals is described in detail in our previous works (see, e.g., [11]). Here we just present the final formulae used in computations. The principal parts of the $\left\langle r_{i j}^{-3}\right\rangle,\left\langle r_{i j}^{-4}\right\rangle$ and $\left\langle r_{i j}^{-5}\right\rangle$ expectation values have been computed with the use of the following formulae:

$$
\begin{equation*}
\left\langle\frac{1}{r_{i j}^{3}}\right\rangle=4 \pi\left\langle\delta\left(\mathbf{r}_{i j}\right)\right\rangle+\left\langle\frac{1}{r_{i j}^{3}}\right\rangle_{R} \tag{8}
\end{equation*}
$$

Table 5. The best values of the total energies (E) in atomic units for the ground states of the Ps^{-} and H^{-}ions obtained in earlier variational computations.

	$E\left(\mathrm{Ps}^{-}\right)$	$E\left({ }^{\infty} \mathrm{H}^{-}\right)$	
E^{a}	-0.2620050702329801077703745	E^{b}	-0.527751016544377196589733
E^{c}	-0.2620050702329801077666	E^{c}	-0.5277510165443771965865
E^{d}	-0.262005070232980107696	E^{d}	-0.527751016544377196503
E^{e}	-0.262005070232965	E^{e}	-0.527751016544253
E^{f}	-0.26200507023294	-	-

${ }^{\mathrm{a}, \mathrm{b}}$ This work.
${ }^{\mathrm{c}}$ Reference [2].
${ }^{\mathrm{d}}$ Reference [19].
${ }^{\mathrm{e}}$ Reference [1].
${ }^{\mathrm{f}}$ Reference [18].

$$
\begin{align*}
\left\langle\frac{1}{r_{i j}^{4}}\right\rangle & =\left\langle f_{i j}\right\rangle+\left\langle\frac{1}{r_{i j}^{4}}\right\rangle_{R}=-6 \pi\left\langle\delta\left(\mathbf{r}_{i j}\right) \frac{\partial}{\partial r_{i j}}\right\rangle+\left\langle\frac{1}{r_{i j}^{4}}\right\rangle_{R} \tag{9}\\
\left\langle\frac{1}{r_{i j}^{5}}\right\rangle & =\left\langle F_{i j}\right\rangle+\left\langle\frac{1}{r_{i j}^{5}}\right\rangle_{R}=2 \pi\left[\left\langle\delta\left(\mathbf{r}_{i j}\right) \frac{\partial^{2}}{\partial r_{i j}^{2}}\right\rangle-\frac{1}{3}\left\langle\delta\left(\mathbf{r}_{i j}\right) \frac{\partial^{2}}{\partial r_{k j} \partial r_{k i}}\right\rangle\right]+\left\langle\frac{1}{r_{i j}^{5}}\right\rangle_{R}, \tag{10}
\end{align*}
$$

where $\left\langle\frac{1}{r_{i j}^{n}}\right\rangle_{R}=\left\langle r_{i j}^{-n}\right\rangle_{R}$ designates the regular part of the $\left\langle r_{i j}^{-n}\right\rangle$ expectation value. The explicit formulae for the regular parts of the $\left\langle\frac{1}{r_{i j}^{3}}\right\rangle,\left\langle\frac{1}{r_{i j}^{4}}\right\rangle$ and $\left\langle\frac{1}{r_{i j}^{5}}\right\rangle$ expectation values are presented in [11]. The difference between the principal and regular parts of any expectation value is called the finite term contribution (or finite contributions) [11]. For the regular expectation values all finite contributions equal zero identically. In equations (8)-(10), the $\left\langle\delta\left(\mathbf{r}_{i j}\right) \hat{A}\left(r_{i j}, r_{k i}, r_{k j}\right)\right\rangle$ expectation value means the $\left\langle\delta\left(\mathbf{r}_{i j}\right) \hat{A}\left(r_{i j}, r_{k i}, r_{k j}\right)\left(\Psi^{*} \Psi\right)\right\rangle$ expectation value. All expectation values mentioned in these formulae, including the finite-term contributions $\left\langle f_{i j}\right\rangle$ and $\left\langle F_{i j}\right\rangle$, can be found in tables 2 and 4.

Note that for the ${ }^{\infty} \mathrm{H}^{-}$ion, the electron-electron expectation value $\left\langle r_{21}^{-3}\right\rangle$ corresponds to the so-called Araki-Sucher term which contributes to the lowest order QED correction [12, 13]. Another contribution to that correction comes from the Bethe logarithm [14]. The expectation values $\left\langle r_{i j}^{-5}\right\rangle$ are needed to compute the matrix elements of the potential $V \sim r^{-5}$. Such expectation values are needed, e.g., to compute the Wichmann-Kroll corrections on the vacuum polarization [15].

The explicit formula for the $\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^{31}}\right\rangle$ expectation value takes the form

$$
\begin{equation*}
\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^{3}}\right\rangle=\frac{1}{2}\left\langle\frac{1}{r_{31}}\right\rangle+\frac{1}{2}\left[\left\langle\frac{r_{32}^{2}}{r_{31}^{3}}\right\rangle-\left\langle\frac{r_{21}^{2}}{r_{31}^{3}}\right\rangle\right] . \tag{11}
\end{equation*}
$$

The first expectation value on the right-hand side of this expression is regular (it can be found, e.g., in the expectation value of the Coulomb $\frac{1}{r_{31}}$ potential). The second and third expectation values on the right-hand side of this equation are individually singular. But each of them contains exactly the same singularity, which can be written in the form $\simeq A \cdot\left(\ln \varepsilon+\gamma_{E}\right)$ (at $\varepsilon \rightarrow 0$), where ε is a small (positive) parameter, while γ_{E} is the Euler constant ($\gamma_{E}=$ $0.577215 \ldots$.) and A is a numerical constant (for more detail, see, e.g., [11] and references therein). Since the two terms with singularities have the opposite signs, these two singularities cancel each other completely from the final expression. The complete cancellation of singularities means that the right-hand side of equation (11) is regular and its computation does
not present any problem. The method of regularization based on the complete compensation of singular parts arising from different terms in one formula was proposed almost 200 years ago by Italian mathematician Frullani [16]. In general, the singular expectation value which can be regularized with the use of this method is called Frullanian. Note that the $\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{21}}{r_{31}^{3}}\right\rangle$ expectation value is also Frullanian, while the $\left\langle\frac{\mathbf{r}_{32} \cdot \mathbf{r}_{21}}{r_{31}^{3}}\right\rangle$ expectation value is not (it is singular). In the last case, the two singularities from different terms are added to each other (instead of cancellation). Such a case can be designated as anti-Frullanian. The regular expectation value $\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{21}}{r_{31}^{3}}\right\rangle$ can be computed either directly, or with the use of the following formula:

$$
\begin{equation*}
\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{21}}{r_{31}^{3}}\right\rangle=\left\langle\frac{1}{r_{31}}\right\rangle-\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^{3}}\right\rangle \tag{12}
\end{equation*}
$$

Tables 2 and 4 contain the $\frac{1}{2}\left(\left\langle\frac{r_{32}^{2}}{r_{31}^{3}}\right\rangle-\left\langle\frac{r_{21}^{2}}{r_{31}^{3}}\right\rangle\right),\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{21}}{r_{31}^{3}}\right\rangle$ and $\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^{3}}\right\rangle$ expectation values.
Thus in this work we have determined the bound state properties of the ground $1^{1} S(L=0)$-state in the Ps^{-}and ${ }^{\infty} \mathrm{H}^{-}$ions to a benchmark accuracy. Our variational results obtained for the ground state energies are the best-to-date. The energies determined in a number of earlier computations can be found in table 5 . Our results also include some singular properties, i.e. the properties which are represented by the singular expectation values. In particular, we have computed the $\left\langle r_{i j}^{-3}\right\rangle,\left\langle r_{i j}^{-4}\right\rangle,\left\langle r_{i j}^{-5}\right\rangle,\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{21}}{r_{31}^{3}}\right\rangle$ and $\left\langle\frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^{3}}\right\rangle$ singular expectation values. Analogous computations of the singular expectation values for the $1^{1} S$ - and $2^{3} S$-states of the helium atoms $\left({ }^{3} \mathrm{He},{ }^{4} \mathrm{He}\right.$ and ${ }^{\infty} \mathrm{He}$ atoms) have been performed in [17].

References

[1] Frolov A M 1998 Phys. Rev. A 572436
[2] Drake G W F, Cassar M and Nistor R A 2002 Phys. Rev. A 65054501
[3] Ho Y K 1993 Phys. Rev. A 484780
[4] Frolov A M 2001 Phys. Rev. E 64036704 Frolov A M 2006 Phys. Rev. E 74027702
[5] Bailey D H 1995 ACM Trans. Math. Softw. 21379
[6] Bailey D H 2000 Comput. Sci. Eng. 224
[7] Kato T 1957 Commun. Pure Appl. Math. 10151
[8] Pack R T and Brown W B 1966 J. Chem. Phys. 45556
[9] Chong D P and Schrader D M 1969 Mol. Phys. 16137
[10] Fock V A 1930 Z. Phys. 63855
[11] Frolov A M 2005 J. Phys. B: At. Mol. Opt. Phys. 382723
[12] Araki H 1957 Prog. Theor. Phys. 17619
[13] Sucher J 1958 Phys. Rev. 1091010
[14] Bethe H A and Salpeter E E 1957 Quantum Mechanics of One- and Two-Electron Atoms (Berlin: Springer)
[15] Wichmann E H and Kroll N M 1956 Phys. Rev. 101843
[16] Frullani G 1828 Memorie della Societa Italiana delle Socienze 20448
[17] Frolov A M 2007 J. Chem. Phys. 126104302
[18] Ho Y K 1990 Phys. Lett. A 144237
[19] Frolov A M and Smith V H Jr 2003 J. Phys. B 362911

[^0]: ${ }^{\text {a }}$ After additional optimization of the 'fast' nonlinear parameters at this dimension (for more details, see the second part of [4]).
 ${ }^{\mathrm{b}}$ Numerical values currently used for numerical evaluation of various annihilation rates (see, e.g., [19]).

[^1]: ${ }^{\mathrm{a}}$ The exact value from equation (4).

